Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ТФ

А.В. Сорокин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.Б.6** «Физика»

Код и наименование направления подготовки (специальности): 15.03.01

Машиностроение

Направленность (профиль, специализация): Литейные технологии и

оборудование

Статус дисциплины: обязательная часть (базовая)

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.И. Бахмат
	Зав. кафедрой «ЭЭ»	С.А. Гончаров
Согласовал	руководитель направленности	В.В. Гриценко
	(профиля) программы	

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Код		В результате изуче	ния дисциплины обуч	нающиеся должны:
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть
ОПК-1	умение использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования	основные законы естественнонаучных дисциплин; основные понятия и методы математического анализа и моделирования; основы методов теоретического и экспериментального исследова-ния	применять методы математического анализа и моделирования при решении типовых профессиональных задач; использовать результаты теоретического и экспериментального исследования для решения проблемных задач и задач оптимизации	методами построения математических моделей типовых профессиональных задач; навыками применения методов теоретического и экспериментального исследования в профессиональной деятельности

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики),	Математика, Химия
предшествующие изучению	
дисциплины, результаты	
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	Гидравлика, Теоретическая механика, Электротехника
которых результаты освоения	и электроника
данной дисциплины будут	
необходимы, как входные	
знания, умения и владения для	
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 14 / 504

		Виды занятий,	их трудоемкость (ча	ac.)	Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
заочная	12	8	16	468	54

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 2

Объем дисциплины в семестре з.е. /час: 7 / 252 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной работы
Лекции Лабораторные Практические Самостоятельная работы занятия работа		обучающегося с преподавателем (час)		
6	4	8	234	27

Лекционные занятия (6ч.)

1. Механика. {лекция с разбором конкретных ситуаций} (2ч.)[1,3,6,10] Основные законы физики в профессиональной деятельности. Введение, Предмет Цель физики. механики физические основы физики. взаимодействия. Наиболее общие понятия и теории. Связь физики со смежными науками. Развитие физики и техники и их взаимное влияние друг на друга. Роль измерений в физике. Единицы измерений и системы единиц. Предмет механики. Классическая и квантовая механика. Понятия пространства и времени. Система отсчета. Основные физические модели: материальная точка, траектория путь, перемещение. Кинематические соотношения и преобразования. Понятия скорости Прямолинейное движение. Равномерное и равнопеременное и ускорения. движения по прямой. Кинематические соотношения при прямолинейном движении. Криволинейное движение. Нормальное и тангенциальное ускорения. Угловая скорость и угловое ускорение. Связь между векторами линейных и угловых скоростей и ускорений. Кинематические соотношения при движении по окружности. Динамика материальной точки. Вращательное движение твёрдого тела.

Основная задача динамики. Инерция, масса, сила. Инерциальная система отсчёта. Законы Ньютона, их физическое содержание и взаимная связь. Импульс (количество движения), импульс силы, закон сохранения импульса. Принцип работы реактивного двигателя. Понятие абсолютно твердого тела. Вращение тела вокруг неподвижной оси. Момент силы.Виды и категории сил в природе. Упругое тело. Закон Гука для основных видов деформации. Сила трения. Виды трения. Сила тяготения. Закон всемирного тяготения. Вес тела. Сила тяжести. Силы, возникающие при криволинейном движении. Инерциальные и неинерциальные системы отсчета.Механическая работа. Работа переменной силы. Мощность. Кинетическая энергия тела. Потенциальная энергия и энергия взаимодействия. Закон сохранения энергии в механике. Применение законов сохранения к упругому и неупругому ударам.

- 2. Механические колебания и волны. {лекция с разбором конкретных ситуаций} (2ч.)[1,3,6,10] Виды колебаний. Гармонические колебания. Гармонический осциллятор. Период колебаний пружинного, математического и физического маятников. Энергия гармонических колебаний. Виды волн. Уравнения плоской волны. Интерференция волн.
- 3. Молекулярная физика и термодинамика. {лекция с разбором конкретных (24.)[1,6,8,9]Термодинамический ситуаций} И молекулярно-кинетический макроскопических методы изучения тел. Термодинамические параметры объем температура). Основные (давление, И положения молекулярнокинетической теории и их опытные обоснования. Понятие идеального газа. Уравнение состояния идеального газа. Газовые законы. Основное уравнение молекулярно-кинетической теории. Средняя энергия молекул, молекулярнокинетическое толкование температуры, абсолютная температура. Внутренняя энергия идеального газа. Теплота и теплоемкость. Работа газа при изменении термодинамики. Применение объема. Первое начало первого термодинамики к различным изопроцессам. Адиабатический процесс. Круговой процесс. Обратимые и необратимые процессы. Принцип действия тепловой машины. Идеальная тепловая машина Карно и ее коэффициент полезного действия.

Практические занятия (8ч.)

- **1. Кинематика.** {«мозговой штурм»} (2ч.)[1,6,7] 5. Кинематические соотношения и преобразования. Кинематика вращательного движения. Прямолинейное равномерное и равнопеременное движение
- **2.** Динамика. {«мозговой штурм»} (2ч.)[1,6,7,10] Динамика поступательного движения. Вращательное движение. Динамика вращательного движения. Работа и энергия. Потенциальная и кинетическая энергия. Колебательное движение.
- **3. Механические колебания и волны.** {«мозговой штурм»} (2ч.)[1,6,7,9] Виды колебаний. Гармонические колебания. Гармонический осциллятор. Период колебаний пружинного, математического и физического маятников. Энергия гармонических колебаний. Виды волн. Уравнения плоской волны. Интерференция волн.
- **4.** Молекулярная физика и термодинамика. {«мозговой штурм»} (2ч.)[1,6,7,9] . Законы идеальных газов. Уравнение состояния идеального газа. Смеси газов. Основное уравнение кинетической теории газов. Физические основы термодинамики. Теплоемкость идеального газа. Первое начало термодинамики и его применение к изопроцессам. Адиабатический процесс. Круговые процессы. Цикл Карно.

Лабораторные работы (4ч.)

1. Определение ускорения свободного падения тел с помощью оборотного маятника. {работа в малых группах} (4ч.)[3,8] Изучение свойств физического маятника, их применение для определения ускорения свободного падения.

Самостоятельная работа (234ч.)

- 1. Проработка теоретического материала(работа с конспектом лекций, учебником, учебными пособиями) (60ч.) [1,6,8] Механика. Механические колебания и волны. Молекулярная физика и термодинамика.
- **2.** Подготовка к практическим занятиям.(14ч.)[6,7] Кинематика.Динамика.Механические физика.Термодинамика.
- **3.** Подготовка к лабораторным занятиям, включая подготовку к защите работ. (10ч.)[3,6] Определение ускорения свободного падения с помощью оборотного маятника.
- **4. Выполнение индивидуального домашнего задания(контрольной работы) (50ч.)[1,6,8,10]** Механика. Механические колебания и волны. Молекулярная физика и термодинамика.
- **5.** Самостоятельное изучение разделов дисциплины.(91ч.)[6,8] Механика. Механические колебания. Молекулярная физика. Термодинамика.
- **6. Подготовка к экзамену.(9ч.)[1,6,7,8,9]** Механика.Механические колебания и волны.Молекулярная физика и термодинамика.

Семестр: 3

Объем дисциплины в семестре з.е. /час: 4 / 144

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
4	2	4	134	15

Лекционные занятия (4ч.)

1. Электростатика.Постоянный ток. {лекция с разбором ситуаций (2ч.)[1,6,8,10] Электрические заряды. Закон сохранения зарядов. Закон Кулона. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Силовые линии электрического поля и его графическое изображение. Поток вектора напряжённости электрического поля. Теорема Остроградского – Гаусса и её применение. Работа при перемещении заряда в электрическом поле. Потенциал электрического поля. Энергия взаимодействия системы Эквипотенциальные поверхности. Связь зарядов. междунапряжённостью и потенциалом. Разделение веществ по электрическим (диэлектрики проводники). Электрический свойствам И диполь напряжённость и потенциал. Поляризация диэлектриков. Диэлектрическая проницаемость среды. Вектор электрического смещения. Теорема Гаусса в диэлектриках. проводников электрическом Свойства внешнем Напряжённость электрического поля В близи поверхности проводника. Электроёмкость проводников. Конденсаторы. Ёмкость конденсаторов

при последовательном и параллельном соединениях. Энергия электрического поля проводников и конденсаторов.

Постоянный электрический ток . Общиесвойстваэлектрического тока. Законы постоянного тока

Понятие об электрическом токе. Сила и плотность тока. Направление тока. Электродвижущая сила (ЭДС). Разность потенциалов и напряжение. Однородные и неоднородные цепи. Закон Ома однородного участка цепи. Электрическое сопротивление. Закон Ома в дифференциальной форме. Последовательное и параллельное соединение резисторов и источников тока. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля — Ленца. Правила Кирхгофа для разветвлённых электрических цепей.

Электрический ток в средах . Электрический ток в жидкостях. Электролиз. Закон Фарадея при электролизе. Ток в газах. Виды газовых разрядов. Электронная теория проводимости металлов. Термоэлектронные явления. Термоэлементы.

2. Электромагнетизм.Электромагнитные колебания и волны. {лекция с разбором конкретных ситуаций (2ч.)[1,6,8,9] Постоянный магнит. Вектор индукций магнитного поля. Линии магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа и его применение для расчёта магнитных Взаимодействие параллельных токов. Контур с током в магнитном поле. Плоский контур тока в магнитном поле. Магнитный момент. Работа, совершаемая при перемещении проводника с током в магнитном поле. Закон полного тока. Магнитное поле Сила Лоренца. Явление Холла. Движение заряженных частиц в однородном магнитном поле. Определение удельного заряда частиц. Масс-спектрограф. электронов Циклотрон.Магнитные моменты И атомов. Диамагнетики парамагнетики в однородном магнитном поле. Магнитное поле в веществе.

Возникновение индукционного тока. ЭДС индукции. Закон Фарадея. Правило Ленца. Токи Фуко. Самоиндукция и взаимоиндукция. Токи при замыкании и размыкании электрической цепи. Энергия магнитного поля. Колебательный контур. Формула Томсона. Вынужденные электромагнитные колебания. Переменный ток. Индуктивность и ёмкость в цепи переменного тока. Действующее значение тока и напряжение, реактивные сопротивления. Закон Ома в цепи переменного тока. Мощность в цепи переменного тока. Затухающие электрические колебания. Электромагнитные волны. Скорость электромагнитных волн. Энергия и импульс электромагнитной волны. Уравнение Максвелла.

Практические занятия (4ч.)

Ферромагнетизм.

1. Электростатика.Постоянный ток. {«мозговой штурм»} (2ч.)[1,6,7,8] . Электрическое поле в вакууме. Закон Кулона. Напряженность поля точечных зарядов, линии и плоскости. Потенциал. Энергия системы зарядов. Работа по перемещению заряда в поле. Связь потенциала и напряженности. Электрическое

- поле в диэлектриках и проводниках. Электроемкость сферы. Соединение конденсаторов. Энергия заряженного проводника. Энергия электрического поля конденсатора (2 часа).
- Модуль 5. Постоянный электрический ток [3] [5] Законы постоянного тока. Закон Ома для участка цепи, полной цепи. Правила Кирхгофа. Работа и мощность тока.
- 2. Электромагнетизм.Электромагнитные колебания. {«мозговой штурм»} (2ч.)[1,6,7,9] Магнитное поле постоянного тока. Поле прямого тока. Сила Ампера. Контур в магнитном поле. Закон полного тока. Сила Лоренца. перемещения проводника c током В магнитном поле. Электромагнитная индукция. Электродвижущая сила индукции. Количество электричества, протекающее в контуре при изменении магнитного потока. Самоиндукция и взаимоиндукция. Движение зарядов в электрических и магнитных полях.

Лабораторные работы (2ч.)

1. Измерение сопротивления с помощью моста Уитстона. {работа в малых группах} (2ч.)[4,6] Применение правил Кирхгофа для нахождения неизвестного сопротивления.

Самостоятельная работа (134ч.)

- 1. теоретического материала(работа Проработка конспектом лекций, учебником, учебными пособиями) (30ч.) [1,6,8]. Электрическое поле в вакууме. Закон Кулона. Напряженность поля точечных зарядов, линии и плоскости. Потенциал. Энергия системы зарядов. Работа по перемещению заряда в поле. Связь потенциала и напряженности. Электрическое поле в диэлектриках и проводниках. Электроемкость сферы. Соединение конденсаторов. заряженного проводника. Энергия электрического поля конденсатора (2 часа). Модуль электрический 5. Постоянный ток [3] Законы постоянного тока. Закон Ома для участка цепи, полной цепи. Правила Кирхгофа. Работа и мощность тока .Электромагнетизм. Электромагнитные колебания и волны. Магнитное поле постоянного тока. Поле прямого тока. Сила Ампера. Контур в магнитном поле. Сила Лоренца. Закон полного тока. Работа проводника током В магнитном Электромагнитная индукция. Электродвижущая сила индукции. Количество электричества, протекающее в контуре при изменении магнитного потока. Самоиндукция и взаимоиндукция. Движение зарядов в электрических и магнитных полях.
- **2.** Подготовка к практическим занятиям.(6ч.)[1,6,7,8] Электростатика.Постоянный ток Магнетизм.
- **3.** Подготовка к лабораторным занятиям, включая подготовку к защите работ. **(4ч.)[4,6]** Измерение сопротивления с помощью моста Уитстона.
- 4. Выполнение индивидуального домашнего задания(контрольной работы)

(50ч.)[1,6,7,8] Электростатика.Постоянный ток.Магнетизм.

- **5.** Самостоятельное изучение разделов дисциплины.(40ч.)[1,6,8,9] Электростатика.Постоянный ток.Магнетизм.
- 6. Подготовка к зачету.(4ч.)[1,6,7,8] Электростатика.Постоянный ток.Магнетизм.

Семестр: 4

Объем дисциплины в семестре з.е. /час: 3 / 108 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной работы
Лекции	Лекции Лабораторные Практические Самостоятельная работы занятия работа		обучающегося с преподавателем (час)	
2	2	4	100	12

Лекционные занятия (2ч.)

- 1. Оптика. Атомная и ядерная физика. {лекция с разбором конкретных ситуаций} (2ч.)[1,5,6,8] Интерференция света. Интерференция волн от двух источников. Интерференция в тонких пленках. Интерферометры. Дифракция света. Зоны Френеля. Дифракция от щели. Дифракционная решетка. Поляризация света. Закон Брюстера. Закон Малюса. Искусственная анизотропия. Вращение плоскости поляризации (2 часа).
- 5. Квантовая физика. Закон Стефана-Больцмана. Закон Вина. Формула Эйнштейна для фотоэффекта. Давление света. Эффект Комптона. Атомная и ядерная физика. Опыты Резерфорда. Атом водорода по теории Бора. Определение угла рассеяния альфа частиц и концентрации рассеянных частиц. Формула Бальмера..Элементы квантовой механики. Волны де Бройля. Соотношение неопределенности. Уравнение Шредингера (2 часа).
- 8. Рентгеновское излучение. Сплошное и характеристическое излучение. Закон Мозли. Радиоактивность. Превращение ядер при радиоактивном распаде. Закон радиоактивного распада. Активность .

Ядерные реакции. Реакция деления. Энергия ядерной реакции. Элементарные частины.

Практические занятия (4ч.)

- **1. Оптика.** {«мозговой штурм»} (2ч.)[1,5,7] Интерференция света.Дифракция света.Квантовая оптика.
- **2. Атомная и ядерная физика.** {«мозговой штурм»} (2ч.)[1,5,7] Атомная физика.Квантовая механика.Ядерная физика.Физика элементарных частиц.

Лабораторные работы (2ч.)

1. . Определение длины волны световой волны {работа в малых группах} (2ч.)[2,5,6] Изучение дифракции света, прохождения света через щели и дифракционную решетку. Определение длины волны света

Самостоятельная работа (100ч.)

- **1.** Проработка теоретического материала(работа с конспектом лекций, учебником, учебными пособиями) (20ч.) [1,5,6,8,9] Волновая оптика. Квантовая оптика. Атомная физика. Квантовая механика. Ядерная физика.
- **2. Подготовка к практическим занятиям.**(**6ч.**)[1,**5**,**6**,**7**] Оптика. Атомная и ядерная физика.
- **3. Подготовка к лабораторным занятиям.**(**4ч.**)[**2,5,8**] Определение длины световой волны.
- **4.** Выполнение индивидуального домашнего задания (контрольной работы) (30ч.)[1,5,6,7,8,8] Оптика. Атомная физика. Квантовая механика. Ядерная физика.
- **5.** Самостоятельное изучение разделов дисциплины.(31ч.)[1,5,6,8,10] Оптика. Атомная и ядерная физика.
- **6.** Подготовка к экзамену.(9ч.)[1,5,6,7,8] Волновая оптика.Квантовая оптика.Атомная физика.Квантовая механика.Ядерная физика.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Бахмат, В.И. Физика [текст]: метод. пособие и контр. задания для студентов заоч. формы обучения направления ЭиЭ "Физика"/ В.И. Бахмат. Рубцовск: РИО, 2013. 84 с. (42 экз.)
- 2. Борисовский, В.В. Оптика: метод. указания к лаборатор. работам по физике для студентов техн. направлений всех форм обучения/ В.В. Борисовский, В.И. Бахмат. Рубцовск: РИО АлтГТУ, 2015. 30 с. URL: https://edu.rubinst.ru/resources/books/Borisovskiy_V.V._Optika_2015.pdf (дата обращения 10.08. 2021)
- 3. Бахмат, В.И. Механика и молекулярная физика: метод. указания к выполнению лаборатор. работ по физике для студентов всех форм обучения техн. направлений/ В.И. Бахмат, В.В. Борисовский. Рубцовск: РИО, 2015. 39 с. URL: https://edu.rubinst.ru/resources/books/Bakhmat_V.I._Mekhanika_i_molekulyarnaya_phi zika (lab.rab) 2015.pdf (дата обращения 10.08. 2021)
- 4. Бахмат, В.И. Электричество и магнетизм:метод. указания к лаборатор. работам по физике для студентов техн. направлений всех форм обучения/ В.И. Бахмат, В.В. Борисовский. Рубцовск: РИО, 2015. 27 с. URL: https://edu.rubinst.ru/resources/books/Bakhmat_V.I._Yelektrichestvo_i_magnetizm_201 5.pdf (дата обращения 10.08. 2021)

6. Перечень учебной литературы

6.1. Основная литература

- 5. Краткий курс общей физики : учебное пособие / И. А. Старостина, Е. В. Бурдова, О. И. Кондратьева [и др.] ; под редакцией Л. Г. Шевчук. Казань : Казанский национальный исследовательский технологический университет, 2014. 376 с. ISBN 978-5-7882-1691-1. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/63716.html (дата обращения: 07.08.2021). Режим доступа: для авторизир. пользователей
- 6. Ивлиев, А. Д. Физика : учебное пособие / А. Д. Ивлиев. 2-е изд., испр. Санкт-Петербург : Лань, 2021. 672 с. ISBN 978-5-8114-0760-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/167746 (дата обращения: 07.08.2021). Режим доступа: для авториз. пользователей.

6.2. Дополнительная литература

- 7. Иродов, И. Е. Задачи по общей физике : учебное пособие для вузов / И. Е. Иродов. 18-е изд., стер. Санкт-Петербург : Лань, 2021. 420 с. ISBN 978-5-8114-6779-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/152437 (дата обращения: 09.09.2021). Режим доступа: для авториз. пользователей.
- 8. Кузьмичева, В. А. Практикум по общей физике: учебное пособие / В. А. Кузьмичева. Москва: Московская государственная академия водного транспорта, 2019. 233 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/97319.html (дата обращения: 07.08.2021). Режим доступа: для авторизир. пользователей

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 9. Научно-технический журнал «Успехи прикладной физики» https://advance.orion-ir.ru
- 10. Научный электронный журнал «Ученые записки физического факультета московского университета» http://uzmu.phys.msu.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (Φ OM) по дисциплине представлен в приложении A.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Microsoft Office
2	Антивирус Kaspersky
3	LibreOffice
4	Windows

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным			
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные			
	интернет-ресурсы (http://Window.edu.ru)			
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к			
	фондам российских библиотек. Содержит коллекции оцифрованных документов			
	(как открытого доступа, так и ограниченных авторским правом), а также каталог			
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работь	<u> </u>
учебные аудитории для проведения занятий лекционного типа	
учебные аудитории для проведения занятий семинарского типа	
учебные аудитории для проведения групповых и индивидуальных консультаций	
учебные аудитории для проведения текущего контроля и промежуточной аттестации	
помещения для самостоятельной работы	
лаборатории	

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».

ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Физика»

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОПК-1: умение использовать основные		Комплект контролирующих
законы естественнонаучных дисциплин в профессиональной деятельности,		материалов для
применять методы математического анализа	Зачет; экзамен	зачета; комплект контролирующих
и моделирования, теоретического и экспериментального исследования		материалов для экзамена

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Показатели оценивания компетенций представлены в разделе «Требования к результатам освоения дисциплины» рабочей программы дисциплины «Физика» с декомпозицией: знать, уметь, владеть.

При оценивании сформированности компетенций по дисциплине «Физика» используется 100-балльная шкала.

Критерий	Оценка по 100- балльной шкале	Оценка по традиционной шкале
Студент твёрдо знает программный	75-100	Отлично
материал, системно и грамотно излагает		
его, демонстрирует необходимый		
уровень компетенций, чёткие, сжатые		
ответы на дополнительные вопросы,		
свободно владеет понятийным		
аппаратом.		
Студент проявил полное знание	50-74	Хорошо
программного материала, демонстрирует		
сформированные на достаточном уровне		
умения и навыки, указанные в программе		
компетенции, допускает		
непринципиальные неточности при		
изложении ответа на вопросы.		
Студент обнаруживает знания только	25-49	<i>Удовлетворительно</i>
основного материала, но не усвоил		
детали, допускает ошибки,		
демонстрирует не до конца		
сформированные компетенции, умения		
систематизировать материал и делать		
выводы.		
Студент не усвоил основное содержание	<25	Неудовлетворительно

материала, не умеет систематизировать информацию, делать необходимые	
выводы, чётко и грамотно отвечать на	
заданные вопросы, демонстрирует	
низкий уровень овладения	
необходимыми компетенциями.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности.

№ пп	Вопрос/Задача	Проверяемые компетенции
1	Используя основные законы естественнонаучных дисциплин в профессиональной деятельности, ответьте на вопросы:	ОПК-1
	1. Кинематика гармонических колебаний. 2. Динамика гармонических колебаний. 3. Основное уравнение молекулярно-кинетической теории. Кинетическая энергия молекул. Число степеней свободы.	
	4. Работа сил электростатического поля при перемещении зарядов. Потенциальная энергия. Потенциал. 5. Электроемкость конденсаторов. Соединение	
	конденсаторов. 6. Искровой, тлеющий и коронный разряды. Газоразрядная плазма. 7. Способы получения интерференционных картин от	
	двух источников 8. Условия максимумов и минимумов при интерференции света. 9. Типы взаимодействий элементарных частиц.	
2	Применяя методы теоретического и экспериментального исследования, опишите методику:	ОПК-1
	1. Изучения свойств физического маятника и ее применение для определения ускорения свободного падения.	
	2. Проверки применимости модели идеального газа для воздуха при комнатной температуре и атмосферном давлении.	
	 Определения показателя адиабаты воздуха методом Клемана-Дезорма. Определения значение неизвестного сопротивления, при помощи правила Кирхгофа. 	
	при помощи правила Кирхгофа. 5. Определения зависимость индуктивности катушки от числа витков и магнитной проницаемости среды.	
3	Применя основные законы естественнонаучных	ОПК-1

дисциплин в профессиональной деятельности,
выполните задания:
1. Найти скорость и тангенциальное ускорение точки
2. Определить работу расширения газа и полученное
газом количество теплоты.
3. Найти энергию теплового движения молекул газа
при заданных условиях.
4. Найдите напряженность магнитного поля в заданной
точке
5. Найдите шаг винтовой траектории электрона в
магнитном поле.
6. Найдите амплитудное и действующее значение ЭДС
в контуре.
7. Найти световое давление на стенки лампы.
8. Определить кинетическую, потенциальную и полную
энергии электрона
9. Найти массу фотона, импульс которого известен.

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.